On the First Vafa-witten Bound for Two-dimensional Tori
نویسندگان
چکیده
— In this paper we explicitly compute the first Vafa-Witten bound for a two-dimensional torus, namely the best uniform upper bound for the first eigenvalue of the family of twisted (by arbitrary vector potentials) Dirac operators on a flat two-torus. Starting with an arbitrary flat metric we give either an exact answer or a precise algorithm for producing an answer. As a by-product we develop a constructive way of implementing the projection map from the Poincaré upper half-plane onto the standard fundamental domain for its SL(2,Z)-action. Résumé (Sur la première borne de Vafa-Witten pour les tores de dimension deux) Dans cet article nous calculons explicitement la première borne de Vafa-Witten pour un tore de dimension 2, c’est-à-dire la meilleure borne supérieure pour la première valeur propre de la famille d’opérateurs de Dirac couplés à des potentiels vectoriels arbitraires, définis sur un tore plat de dimension 2. Pour une métrique plate arbitraire nous donnons soit la solution exacte de ce problème soit un algorithme précis pour en produire une. Une conséquence de nos résultats est une réalisation constructive de la projection du demi-plan de Poincaré sur le domaine fondamental de l’action de SL(2,Z) sur celui-ci.
منابع مشابه
Twisted Six Dimensional Gauge Theories on Tori, Matrix Models, and Integrable Systems
We use the Dijkgraaf-Vafa technique to study massive vacua of 6D SU(N) SYM theories on tori with R-symmetry twists. One finds a matrix model living on the compactification torus with a genus 2 spectral curve. The Jacobian of this curve is closely related to a twisted four torus T in which the Seiberg-Witten curves of the theory are embedded. We also analyze R-symmetry twists in a bundle with no...
متن کاملWitten Geometric Quantization of the Moduli of CY Threefolds
In this paper we study two different topics. The first topic is the applications of the geometric quantization scheme of Witten introduced in [2] and [15] to the problem of the quantum background independence in string theory. The second topic is the introduction of a Z structure on the tangent space of the moduli space of polarized CY threefolds M(M). Based on the existence of a Z structure on...
متن کاملQuantum Background Independence and Witten Geometric Quantization of the Moduli of CY Threefolds
In this paper we study two different topics. The first topic is the applications of the geometric quantization scheme of Witten introduced in [2] and [16] to the problem of the quantum background independence in string theory. The second topic is the introduction of a Z structure on the tangent space of the moduli space of polarized CY threefolds M(M). Based on the existence of a Z structure on...
متن کاملVafa-witten Estimates for Compact Symmetric Spaces
We give an optimal upper bound for the first eigenvalue of the untwisted Dirac operator on a compact symmetric space G/H with rkG− rkH ≤ 1 with respect to arbitrary Riemannian metrics. We also prove a rigidity statement. Herzlich gave an optimal upper bound for the lowest eigenvalue of the Dirac operator on spheres with arbitrary Riemannian metrics in [9] using a method developed by Vafa and Wi...
متن کاملThe Seiberg–Witten invariants and 4–manifolds with essential tori
A formula is given for the Seiberg–Witten invariants of a 4–manifold that is cut along certain kinds of 3–dimensional tori. The formula involves a Seiberg– Witten invariant for each of the resulting pieces. AMS Classification numbers Primary: 57R57 Secondary: 57M25, 57N13
متن کامل